首页> 外文OA文献 >A Novel interest-point-based background subtraction algorithm
【2h】

A Novel interest-point-based background subtraction algorithm

机译:一种新颖的基于兴趣点的背景减除算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current Background Subtraction (BGS) algorithms are mostly pixel-based methods. We propose an Interest-Point(IP)-based BGS algorithm applicable in IP-based Computer Vision applications. Based on a block-wise processing strategy, the frames are divided into blocks of the same size. IPs inside each block are together Events. Throughout the frame sequence, the algorithm stores the Events in each block as well as the numbers of their occurrences (Repetition Index (RI)) in a Binary Tree. The RI is used to classify Events as either background or foreground. The background Events appear significantly more often than foreground Events. Events with an RI greater than a certain threshold are classified as background, the rest as foreground. This Event classification is used to label IPs of frames into the foreground and background IPs. Experimental results quantitatively show that the proposed algorithm delivers a good subtraction rate in comparison with other BGS approaches. Moreover, it creates a map of the background usable for further processing, it is robust to changes in illumination and can keep itself updated to changes in the background.
机译:当前的背景减法(BGS)算法主要是基于像素的方法。我们提出了一种适用于基于IP的计算机视觉应用程序的基于兴趣点(IP)的BGS算法。基于逐块处理策略,将帧分为相同大小的块。每个块内的IP都是事件。在整个帧序列中,算法将事件存储在每个块中,并将事件的出现次数(重复索引(RI))存储在二叉树中。 RI用于将事件分类为背景或前景。后台事件比前台事件更频繁地出现。 RI大于特定阈值的事件被分类为背景,其余事件被分类为前景。此事件分类用于将帧的IP标记为前景IP和背景IP。实验结果定量地表明,与其他BGS方法相比,该算法具有很好的减法率。而且,它创建了可用于进一步处理的背景图,它对照明的变化很稳定,并且可以根据背景变化保持自身更新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号